Přepínače CISCO série 2900 a 2950

Tyto přepínače jsou vybaveny managementem, umožňujícím konfigurovat přístup k přepínači, dělit porty do samostatných virtuálních sítí LAN (VLAN) a přizpůsobovat celou řadu funkci přepínače požadavkům uživatele.

Vnitřní uspořádání přepínače je zhruba následující:

Vlastní přepínání paketů mezi porty přepínače zajišťuje specializovaný hardware. Do skříně přepínače je dále vestavěn počítač, skládající se z procesoru (CPU), pamětí (ROM, FLASH a RAM), sériového rozhraní pro připojení konsoly, ethernetového rozhraní pro další typy připojení (web, telnet, TFTP, ...) a ovládací logiky. Ovládací logika umožňuje operačnímu systému počítače monitorovat aktuální stav hardware přepínače a konfigurovat tento hardware podle požadavků uživatele.

Paměť FLASH se používá podobným způsobem jako disková paměť – je v ní vytvořen souborový systém, který umožňuje do paměti ukládat data v podobě souborů. V paměti ROM je trvale uložen systémový zavaděč (boot loader), který po zapnutí přepínače nejprve otestuje hlavní části počítače (funkci CPU, velikost a stav pamětí), vyhledá v paměti FLASH soubor s obrazem operačního systému IOS, zavede operační systém do paměti RAM a a spustí ho. Další funkce přepínače již je řízena operačním systémem.

Pracovní datové struktury OS a aktuální konfigurace přepínače jsou uloženy v paměti RAM. Aby po vypnutí zařízení nebylo nutné vždy znovu provádět konfiguraci, lze aktuální konfiguraci přepínače uložit do paměti FLASH v podobě textového souboru. Po spuštění si OS tento soubor automaticky přečte a podle něj celé zařízení nakonfiguruje.

Pro případ poškození souboru s obrazem OS je zavaděč vybaven funkcí **copy**, umožňující zapsat do paměti FLASH soubory, přenášené z konzoly po sériové lince (protokol XMODEM). Pokud je operační systém funkční, lze po patřičné konfiguraci (IP adresa, maska, gateway) přenášet soubory mezi pamětí FLASH a vzdáleným počítačem službami TCP/IP (protokoly TFTP, RCP).

Ze schématu je zřejmé, že **ethernetové rozhraní řídícího počítače není vyvedeno na samostatný port**, ale je pouze vnitřně propojeno s hardwarem přepínače. V důsledku toho se lze k tomuto portu připojit pouze prostřednictvím některého externího portu přepínače. Pokud by byly všechny externí porty přiřazeny k jiným virtuálním sítím VLAN než vnitřní port, nebyl by k vnitřnímu portu přístup. Implicitně jsou **všechny porty přepínače** (včetně vnitřního) přiřazeny k virtuální síti VLAN 1 a proto je k vnitřnímu rozhraní přístup ze všech externích portů. Tohoto stavu můžeme dosáhnout např. tím, že z paměti FLASH vymažeme soubor s uloženou konfigurací.

Uvědomte si, že IP adresa, maska a implicitní brána přepínače jsou svázány s vnitřním ethernetovým rozhraním vestavěného počítače (tj. ovládací částí přepínače) a slouží pouze pro vzdálený přístup k ovládání přepínače(tftp, telnet, http). Vlastní přepínač pracuje ve 2. vrstvě OSI modelu a pro svoji funkci žádnou IP adresu nepotřebuje!

Počáteční konfigurace

Pokud operační systém během zavádění nenajde v paměti FLASH uloženou konfiguraci (implicitně soubor **config.txt**), automaticky nabídne uživateli konfiguraci přepínače pomocí menu:

Krok 1	Continue with configuration dialog?[yes/no]: y	Chcete-li konfigurovat přepínač pomocí menu, zadejte \mathbf{Y}
Krok 2	Enter IP address: in address	Zadeite IP adresu přepínače
Krok 3	Enter IP netmask: in netmask	Zadejte m daresu proprince
Krok 4	Would you like to enter	Chcete-li specifikovat adresu implicitní brány
	a default gateway address? [ves]: v	zadeite Y
Krok 5	IP address of the default gateway: ip address	a zadejte aIP adresu brány
Krok 6	Enter a host name: host name	zadejte jméno hosta pro přepínač
Krok 7	Enter enable secret: secret_password	Zadejte heslo pro přístup do privilegovaného
		EXEC modu (max.25 znaků, uloženo
		šifrovaně)
Krok 8	Would you like to configure	Chcete-li nastavit také přístupové heslo pro
	a Telnet password? [yes]: y	telnet, zadejte Y
Krok 9	Enter Telnet password: telnet_password	a zadejte heslo (max.25 znaků)
Krok 10	Would you like to enable as	Chcete-li, aby přepínač zastával funkci
	a cluster command switch? y	řídícího přepínače skupiny (Cluster Command
		Switch), zadejte Y. Pokud má přepínač být jen
		členem skupiny (Cluster Member Switch)
		nebo pracovat samostatně (Standalone
		Switch), zadejte N
Krok 11	Enter cluster name: cls_name	Zadejte jméno skupiny (cluster name)
Krok 12	The following configuration command script	Pro kontrolu se zobrazi nová konfigurace;
	was created:	overte, zda je vse nastaveno spravne
	in subnet zero	a pokracujte krokem 13
	iptorface VI AN1	
	in address 172 20 153 36 255 255 255 0	
	in default-gateway 172 20 153 01	
	hostname myswitch	
	enable secret 5 \$1\$M3pS\$cXtAlkvR3/6Cn8/	
	line vtv 0 15	
	password cnalab	
	snmp community private rw	
	snmp community public ro	
	cluster enable cls_name	
	end	
Krok 13	Use this configuration? [yes/no]: y	Pokud je vše OK, zadejte Y. Jinak zadejte N
		a opakujte konfiguraci od kroku 1

Pokud potvrdíte, že je konfigurace platná, uloží se jako textový soubor do paměti FLASH. Při příštím zavádění OS se konfigurace načte automaticky z tohoto souboru.

Totéž (a ještě mnohem víc) však můžete udělat pomocí příkazů CLI.

Uživatelské rozhraní CLI (Command Line Interface)

Formát příkazu

Příkazy CLI mají tvar textového řetězce, rozděleného na jednotlivá pole mezerami. První pole obsahuje název příkazu, v dalších polích jsou argumenty příkazu:

prompt> příkaz argument argument argument

V poli **příkaz** je možné použít pouze klíčová slova, představující názvy příkazů povolených v odpovídajícím modu. V polích **argument** můžou být klíčová slova nebo aktuální hodnoty (čísla, IP adresy a pod.). Počet a tvar argumentů závisí na příkazu. Příkaz se provede po zápisu ENTER na konci příkazu.

Negace příkazu

Před většinu konfiguračních příkazů lze vložit klíčové slovo *no*. Příkaz v tomto tvaru má buď opačný smysl než výchozí příkaz, nebo nastaví implicitní funkci (tj. odstraní aktuální nastavení). Příkladem prvního případu je příkaz shutdown, kterým lze zakázat funkci rozhraní. Použijeme-li tento příkaz ve tvaru no shutdown, funkci rozhraní naopak *povolíme*. Příkladem druhého případu je příkaz **ip address** *adresa maska*, kterým se nastavuje IP adresa rozhraní. Jestliže příkaz použijeme ve tvaru no **ip address**, zruší dříve nastavenou IP adresu rozhraní.

Interaktivní dialogy

Některé příkazy jsou **interaktivní**, tj. po jejich vyvolání proběhne dialog s uživatelem. V dotazu systém obvykle zobrazí stručné informace o údaji, který od uživatele potřebuje, a pak zobrazí v hranatých závorkách [] implicitní hodnotu. Pokud uživatel odpoví pouze stisknutím klávesy **ENTER**, použije systém implicitní hodnotu. Jestliže chce uživatel hodnotu změnit, musí ji napsat za dotaz a dialog ukončit klávesou **ENTER**. Např. na příkaz **configure** bez argumentu reaguje systém interaktivním dotazem:

Configuring from terminal, memory, or network [terminal]? _

Podobně pokud existuje jen omezený počet možných odpovědí (např. yes, no), může být jejich seznam zobrazen ve tvaru **[yes/no]**. V tomto případě nestačí pouze stisknout ENTER, ale je nutné vždy napsat jednu z nabízených hodnot.

Nápověda

Při zadávání příkazů lze využít systém nápovědy a podpory uživatele. Jestliže na prázdném příkazovém řádku napíšete otazník (?), systém vypíše seznam všech příkazů, které lze použít v aktuálním modu:

switch> ?

Podobně pokud potřebujete nápovědu týkající se některého argumentu příkazu, stačí napsat otazník v pozici odpovídajícího argumentu:

switch> show ?

Další podpora uživatele

Jméno příkazu ani klíčová slova v argumentech příkazu *nemusíte psát celá*. Postačí, když napíšete tolik počátečních písmen, aby posloupnost byla unikátní, tj. jednoznačně určovala příkaz nebo hodnotu argumentu. Např. příkaz **show configuration** lze zkrátit na:

switch# show conf

Pokud chcete, aby se klíčové slovo zobrazilo celé, stačí po počátečních písmenech stisknout klávesu tabelátoru (bez mezery):

switch# sh conf<tab>

switch# sh configuration

Chcete-li znovu zobrazit předchozí příkaz, můžete ho znovu zobrazit stiskem kurzorové šipky nahoru. K dispozici nemáte jen předchozí příkaz, ale celou paměť historie příkazů, ve které se můžete pohybovat kurzorovými šipkami nahoru a dolu. Z historie vyvolaný příkaz lze stisknutím klávesy ENTER provést znovu, případně ho nejprve modifikovat a pak provést modifikovaný příkaz. Pro řádkovou edici můžete použít kurzorové šipky vlevo a vpravo (posun kurzoru) a klávesu BACKSPACE (mazání znaku)

mod	přístup	prompt	ukončení	popis
User EXEC	přihlášení	switch>	příkazem logout	změna nastavení
	z konzoly nebo		nebo quit	terminálu, základní testy,
	telnetem		_	zobrazení informaci
				o systému
Privileged	příkazem	switch#	příkazem disable	ověření konfigurace,
EXEC	enable			přístup k dalším modům
	z User EXEC			(ochrana heslem)
	modu			
VLAN	příkazem vlan	switch(vlan) #	do Privileged EXEC	konfigurace specifických
database	database		modu příkazem exit	parametrů VLAN
	z Privileged			
	EXEC modu			
Global	příkazem	<pre>switch(config) #</pre>	do Privileged EXEC	konfigurace parametrů
Configuration	configure		modu příkazem exit ,	celého přepínače
	z Privileged		end nebo CTRL+Z	
	EXEC modu			
Interface	příkazem	<pre>switch(config-if) #</pre>	do Global Config.	konfigurace rozhraní
Configuration	interface		modu příkazem exit ,	(např. jednotlivých
	z Global		do Privileged EXEC	Ethernetových portů)
	Configuration		modu příkazem end	
	modu		nebo CTRL+Z	
Line	příkazem line	<pre>switch(config-line) #</pre>	do Global Config.	Konfigurace
Configuration	vty nebo line		modu příkazem exit ,	terminálových parametrů
	console		do Privileged EXEC	
	z Global		modu příkazem end	
	Configuration		nebo CTRL+Z	
	modu			

IP konfigurace

V privilegovaném EXEC modu proveďte:

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface vlan 1	přechod do modu konfigurace ovládací VLAN
		(implicitně VLAN 1)
Krok 3	ip address ip_address subnet_mask	specifikace IP adresy a masky
Krok 4	exit	návrat zpět do globálního konfig. modu
Krok 5	ip default-gateway ip_address	nastavení IP adresy implicitní brány
Krok 6	end	návrat do privilegovaného EXEC modu
Krok 7	show running-config	ověření správnosti nastavení
Krok 8	copy running-config startup-config	uložení pracovní konfigurace

Přiřazení IP adresy a masky k rozhraní lze zrušit příkazem:

switch# clear ip address vlan 1 ip_address subnet_mask

Důležité:

Nepoužívejte pro tento účel příkaz **no ip address** v konfiguračním modu. Tento příkaz sice také zruší nastavení IP adresy, ale kromě toho **zcela zablokuje služby IP vrstvy**. Tím by došlo k narušení některých funkcí přepínače (Cluster Management, VLAN), využívajících IP vrstvu i když IP adresa přepínače není nastavena.

Jestliže zrušíte IP adresu v rámci telnetové relace, dojde k přerušení relace a zcela ztratíte spojení s přepínačem (další přístup bude možný jen přes konsolový port). Pokud chcete adresu pouze změnit, proveď te modifikaci normálním příkazem **ip address**, který starou IP adresu a masku ihned nahradí novými údaji. V tomto případě rovněž dojde k přerušení relace, ale k přepínači bude možné přihlásit se znovu na nové IP adrese.

Konfigurace pro přístup telnetem

V privilegovaném EXEC modu proveďte:

Krok 1	enable	přechod do privilegovaného EXEC modu
Krok 2	config terminal	přechod do globálního konfiguračního modu
Krok 3	line vty 0 15	přechod do modu konfigurace konsoly a telnetu; celkem lze povolit až 16 současných telnetových relací (argumenty 0 15 udívají první a poslední relaci)
Krok 4	password <password></password>	zadání hesla pro přístup telnetem POZOR – jedná se o jiné heslo než heslo pro privilegovaný přístup!
Krok 5	end	přechod zpět do privilegovaného EXEC modu
Krok 6	show running-config	kontrolní zobrazení konfigurace; všimněte si, že
		heslo pro telnet není uloženo šifrovaně!
Krok 7	copy running-config startup-config	uložení pracovní konfigurace

Nastavení hesla pro přístup do privilegovaného modu

V globálním konfiguračním modu proveďte:

enable secret [level n] {password}

Argument **level** *n* specifikuje uživatelskou úroveň *n*, která může být nastavena v intervalu 1 až 15. Úroveň 1 odpovídá privilegiím uživatele, přihlášeného v user EXEC modu. Pokud argument **level** chybí, je použita implicitní úroveň 15.

Práce se soubory v paměti FLASH

Přes značnou podobnost IOS přepínačů Cisco s IOS směrovačů Cisco je uspořádání a použití pamětí u přepínačů poněkud odlišné. S pamětí FLASH přepínače lze pracovat jako se souborovým systémem. V podobě souborů je zde uložen nejen obraz (image) operačního systému, ale také soubory potřebné pro funkci webového rozhraní, záložní konfigurace přepínače (startup-config) a pod.

V privilegovaném EXEC modu můžete vypsat informace o obsahu paměti FLASH příkazem:

```
switch# dir flash:
Directory of flash:
2 -rwx 843947 Mar 01 1993 00:02:18 C2900XL-h-mz-112.8-SA
4 drwx 3776 Mar 01 1993 01:23:24 html
66 -rwx 130 Jan 01 1970 00:01:19 env_vars
68 -rwx 1296 Mar 01 1993 06:55:51 config.text
1728000 bytes total (456704 bytes free)
```

Souborový systém pracuje se jmény na bázi URL formátu. Ve specifikaci jména souboru lze uvést protokol TFTP, FLASH, XMODEM nebo RCP. Např. následující příkaz přenese soubor **config.text** z počítače *arno* pomocí protokolu TFTP do přepínače a zapíše ho do paměti FLASH:

switch# copy tftp://arno//2900/config.text flash:config.text

Příkaz copy running-config startup-config umožňuje uložit aktuální konfiguraci do paměti FLASH:

switch# copy running-config startup-config

Building configuration...

nebuďte netrpěliví, zápis konfigurace chvíli trvá. Jakmile je dokončen, objeví se následující zpráva:

[OK] switch#

Soubory v paměti FLASH můžete také přejmenovat. Pokud např. zkoušíte novou konfiguraci a nechcete přijít o původní, stačí původní konfigurační soubor před uložením nového přejmenovat:

switch# rename flash:config.text flash:config.text.old

Pokud budete později chtít soubor s původní konfiguraci zcela zrušit, můžete to provést příkazem:

switch# del flash:config.text.old

Důležité upozornění:

dříve než potvrdíte, že se mazání má provést, zkontrolujte velmi pozorně, zda skutečně mažete **pouze konfigurační soubor**. Pokud se vám podaří smazat celý obsah paměti FLASH nebo jiný soubor, budete muset původní soubory velmi pracně obnovovat pomocí zavaděče.

Se soubory v paměti FLASH lze manipulovat i v **režimu zavaděče**. To může být užitečné např. ve výše popsané situaci, nebo když dojde k havárii přepínače a potřebujete vadný přepínač rychle nahradit jiným. Pokud u vadného přepínače funguje zavaděč a paměť FLASH je dostupná, lze po sériové lince (protokolem XMODEM) přenést konfigurační soubor do externího počítače a odtud ho okopírovat do náhradního přepínače. Vyvolání zavaděče a jeho příprava viz **Procedura pro Password Recovery** (postup pro získání přístupu k přepínači s neznámým heslem), body 1 až 4. Podrobný popis zavaděče najdete v doprovodné dokumentaci přepínače.

Virtuální LAN

Technologie **virtuálních sítí LAN** (VLAN) umožňuje definovat na existující fyzické síti libovolné logické sítě, které se chovají jako samostatné sítě LAN (podobně jako programem **fdisk** lze fyzický disk rozdělit na logické oddíly, které se z hlediska OS chovají jako samostatné disky). Jedná se o důležitý architektonický prvek, umožňující **zvýšit propustnost sítě** (šíření paketů je omezeno jen na segmenty, kam pakety patří) a **zvyšuje bezpečnost** (pakety se mohou dostat z jedné VLAN do jiné pouze přes směrovač, kde lze provoz libovolně filtrovat pomocí ACL). Protože VLAN lze považovat za samostatnou logickou síť, má každá VLAN svoji vlastní databázi MIB (Management Information Base) a svoji vlastní implementaci protokolu STP (Spanning Tree Protocol).

V tomto materiálu se omezíme pouze na méně náročná základní témata:

- Konfigurace přepínače se statickými a multi-VLAN porty (bez použití VTP protokolu)
- Protokol **VTP** (VLAN Trunk Protocol) a konfigurace přepínače pro VTP (VTP doména, VTP mody, verze VTP, pruning)
- Práce s VTP databází (přidávání, modifikace a rušení VLAN)
- Konfigurace ethernetových portů pro **trunking** (zapouzdření, allowed-VLAN list, native VLAN, pruning-eligible list)

Popis a konfiguraci dalších funkcí, jako např. dynamického přiřazování portů k VLAN pomocí VMPS (VLAN Membership Policy Server), využití konfigurace **STP** (Spanning Tree Protocol) ke sdílení zátěže a práce s CoS prioritami (IEEE 802.1p Class of Service), najdete v originální dokumentaci přepínačů.

Režimy příslušnosti portu k VLAN (Port Membership)

Static-access	port typu Static-access může být patřit jen do jedné VLAN a zařazení portu do	
	VLAN se provádí manuálně. Implicitně jsou všechny porty přepínače typu static-	
	access a jsou zařazeny do VLAN 1	
Multi-VLAN	port typu Multi-VLAN může patřit současně až do 64 sítí VLAN (některé modely	
	až do 250 sítí VLAN) a zařazení portu do VLAN se provádí manuálně.	
	Multi-VLAN nelze použít současně s režimem Trunk	
Trunk (ISL or IEEE 802.1Q)	port typu Trunk patří implicitně do všech VLAN definovaných v databázi, jeho	
(přepínače řady 2950 podporují	zařazení však lze omezit konfigurací seznamu allowed-VLAN list. Kromě toho	
pouze IEEE 802.1Q)	lze modifikací seznamu pruning-eligible list blokovat neurčené pakety	
	(broadcast, pakety s neznámým cílem). Protokol VTP udržuje konzistenci VLAN	
	všech přepínačů, patřících do téže VTP domény tím, že si s ostatními přepínači	
	předává informace o konfiguraci VLAN.	
Dynamic access	port typu Dynamic-access může být patřit jen do jedné VLAN a zařazení portu do	
	VLAN se provádí dynamicky ze serveru VMPS. Funkci serveru VMPS může	
	zastávat např. přepínač Catalyst 5000 (nemohou to být přepínače řady 2900 nebo	
	3500 XL).	

Konfigurace statického portu

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní <i>interface</i> .
Krok 3	switchport mode access	konfigurace typu portu
Krok 4	switchport access vlan 3	zařazení portu do požadované VLAN
Krok 5	end	návrat do privilegovaného EXEC modu
Krok 6	show interface interface-id switchport	verifikace konfigurace

Konfigurace Multi-VLAN portu

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní <i>interface</i> .
Krok 3	switchport mode multi	konfigurace typu portu
Krok 4	switchport multi vlan vlan-list	zařazení portu do většího počtu VLAN;
		čísla VLAN v seznamu se oddělují čárkami
Krok 5	end	návrat do privilegovaného EXEC modu
Krok 6	show interface interface-id switchport	verifikace konfigurace

Poznámka: porty typu Multi-VLAN jsou určeny pro připojení přepínače ke směrovači. Pro připojení počítačů, přepínačů a rozbočovačů používejte statické porty.

VTP

VTP je protokol, umožňující několika vzájemně propojeným přepínačům sdílet konfiguraci virtuálních sítí. Přepínače pomocí protokolu VTP mohou svoji konfiguraci rozesílat ostatním přepínačům a synchronizovat svoji VLAN databázi tak, aby databáze všech přepínačů obsahovaly stejné údaje.

Režimy přepínače z hlediska VTP

VTP transparent	V tomto režimu přepínač nepoužívá protokol VTP, neinzeruje na síti svoji VLAN
	konfiguraci a nesynchronizuje svoji VLAN daatabázi s jinými přepínači.
	U transparentního přepínače můžete přidávat, modifikovat a rušit VLAN
	bez ovlivňování konfigurace jiných přepínačů v síti.
	Přesto takový přepínač propouští všechny VTP pakety přicházející z jiných
	přepínačů, takže nepředstavuje pro VTP provoz žádnou bariéru.
VTP server	Přepínač v tomto režimu je řídícím prvkem domény. VTP server inzeruje svoji
	VLAN konfiguraci a pokud u něj přidáte, změníte nebo zrušíte VLAN, projeví se
	tyto změny u všech přepínačů pracujících v režimu VTP klienta a patřících do
	stejné VTP domény.
VTP client	V tomto režimu se přepínač chová podobně jako VTP server, ale nelze u něj
	přidávat, modifikovat a rušit VLAN. Konfigurace VLAN se neukládá do paměti
	FLASH, takže VTP klient potřebuje pro svoji funkci spojení s VTP serverem.

Implicitní nastavení VTP parametrů

VTP mode	null
VTP domain name	server
VTP version 2 enable state	version 2 disabled
VTP password	none
VTP prunning	disabled

Konfigurace VTP serveru

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vtp domain domain-name	nastavení VTP domény (jméno 1 až 32 naků)
Krok 3	vtp password password	volitelné nastavení hesla (8 až 64 znaků)
Krok 4	vtp server	nastavení režimu VTP server
Krok 5	exit	návrat do privilegovaného EXEC modu
Krok 6	show vtp status	verifikace konfigurace

Konfigurace VTP klienta

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vtp client	nastavení režimu VTP client
Krok 3	vtp domain domain-name	nastavení VTP domény (jméno 1 až 32 naků)
Krok 4	vtp password password	volitelné nastavení hesla (8 až 64 znaků)
Krok 5	exit	návrat do privilegovaného EXEC modu
Krok 6	show vtp status	verifikace konfigurace

Konfigurace VTP-transparentního přepínače

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vtp transparent	nastavení režimu VTP-transparent
Krok 3	exit	návrat do privilegovaného EXEC modu
Krok 4	show vtp status	verifikace konfigurace

Povolení/zákaz VTP verze 2

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vtp v2-mode nebo no vtp v2-mode	povolení/zákaz VTP verze 2
Krok 3	exit	návrat do privilegovaného EXEC modu
Krok 4	show vtp status	verifikace konfigurace

Povolení/zákaz pruningu (čištění)

Je-li ve VLAN povolen pruning, jsou přenášeny pouze pakety, jejichž cílová MAC adresa je známá jako adresa patřící do VLAN. Neprocházejí tedy pakety s všesměrovou adresou ani pakety, jejichž adresátem je neznámý počítač. To sice vede k určitému zvýšení propustnosti, ale na druhé straně blokuje automatické přizpůsobování sítě změnám.

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vtp pruning nebo no vtp pruning	povolení/zákaz pruningu
Krok 3	exit	návrat do privilegovaného EXEC modu
Krok 4	show vtp status	verifikace konfigurace

Monitorování VTP

Krok 1	show vtp status	výpis konfigurace VTP
Krok 2	show vtp counters	výpis počtu odeslaných a přijatých VTP zpráv

Implicitní konfigurace VLAN pro Ethernetový port

parametr	implicitní nastavení	interval přípustných hodnot
VLAN ID	1	1-1005
VLAN name	VLANxxxx, kde xxxx je VLAN ID	
802.10 SAID	100.000 + VLAN ID	1-4.294.967.294
MTU size	1500	1500-18190
Translational bridge 1	0	0-1005
Translational bridge 2	0	0-1005
VLAN state	active	active, suspend

Přidání VLAN

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vlan vlan-id name vlan-name	přidání VLAN do databáze
Krok 3	exit	uložení změny do VLAN databáze a návrat do
		privilegovaného EXEC modu
Krok 4	show vlan name vlan-name	verifikace konfigurace VLAN

Modifikace VLAN

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	vlan vlan-id mtu mtu-size	modifikace parametru VLAN (v našem příkladě MTU)
Krok 3	exit	uložení změny do VLAN databáze a návrat do
		privilegovaného EXEC modu
Krok 4	show vlan name vlan-name	verifikace změny konfigurace VLAN

Zrušení VLAN

Krok 1	vlan database	přechod do modu VLAN databáze
Krok 2	no n vlan-id	zrušení VLAN
Krok 3	exit	uložení změny do VLAN databáze a návrat do
		privilegovaného EXEC modu
Krok 4	show vlan brief	verifikace změny VLAN databáze

Trunk porty

Tyto porty slouží k propojení přepínačů, jejichž stejnojmenné VLAN chceme vzájemně sloučit. V telefonařině se pro **trunk** používá český termín **stvol** a označuje trasu, kterou může procházet velký počet telefonních hovorů současně. VLAN trunking pracuje tak, že původní pakety přenášené sítí VLAN v některém přepínači se **zapouzdří** do paketů, označených **značkou** (tagem) příslušné VLAN. Takto označené pakety se pak mohou přenášet trunkem (stvolem) k dalším přepínačům, přičemž po rozpouzdření paketu lze podle značky zjistit, do které VLAN původní paket patří. Tímto způsobem lze zajistit, aby se do jednotlivých VLAN dostávaly pouze ty pakety, které tam patří, tj. které pocházejí ze stejnojmenné VLAN v jiném přepínači.

Konfigurace trunk portu

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní <i>interface</i> .
Krok 3	switchport mode trunk	konfigurace typu portu
Krok 4	switchport trunk encapsulation {isl dot1q}	volba typu zapouzdření (ISL nebo IEEE 802.1Q)
	pouze u přepínačů řady Catalyst 2900 !!!	pokud chcete spojit přepínač Catalyst 2900 s přepínačem Catalyst 2950, musíte použít zapouzdření dot1q
Krok 5	end	návrat do privilegovaného EXEC modu
Krok 6	show interface interface-id switchport	verifikace konfigurace

Zrušení trunk portu

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní <i>interface</i> .
Krok 3	no switchport mode	konfigurace typu portu
Krok 4	end	návrat do privilegovaného EXEC modu
Krok 5	show interface interface-id switchport	verifikace konfigurace

Omezení povolených VLAN pro trunk

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní interface.
Krok 3	switchport mode trunk	konfigurace typu portu
Krok 4	switchport trunk allowed vlan remove vlan-list	specifikace vyloučených VLAN (tj. sítí VLAN,
		jejichž pakety se nemají tímto trunkem přenášet);
		v seznamu se uvádějí VLAN ID, oddělené čárkami
Krok 5	end	návrat do privilegovaného EXEC modu
Krok 6	show interface interface-id switchport allowed	verifikace konfigurace

Modifikace seznamu VLAN s povoleným pruningem

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní <i>interface</i> .
Krok 3	switchport trunk pruning vlan remove vlan-list	specifikace VLAN, u kterých se má potlačit pruning
		(čištění paketů s neznámou cílovou adresou);
		v seznamu se uvádějí VLAN ID, oddělené čárkami
Krok 5	end	návrat do privilegovaného EXEC modu
Krok 6	show interface interface-id switchport	verifikace konfigurace

Nastavení native LAN pro 802.1Q trunk

Krok 1	configure terminal	přechod do globálního konfiguračního modu
Krok 2	interface interface	přechod do konfigurace rozhraní <i>interface</i>
		(port musí být nakonfigurován jako 802.1Q trunk)
Krok 3	switchport trunk native vlan vlan-id	přiřazení VLAN, jejíž provoz se bude trunkem přenášet
		bez zapouzdření
Krok 4	end	návrat do privilegovaného EXEC modu
Krok 5	show interface interface-id switchport	verifikace konfigurace

Procedura pro Password Recovery

1. Připojte terminál nebo počítač s terminálovým emulátorem (**HyperTerminal**, **minicom**) ke konsolovému portu přepínače. Použijte následující nastavení terminálu:

parametr	hodnota
přenosová rychlost (Bd):	9600
počet bitů:	8
parita:	ne
počet stop-bitů:	1
řízení toku:	ne

- 2. Vypněte napájení přepínače (odpojte napájecí šňůru).
- 3. Vyvolejte zavaděč tím, že stisknete tlačítko **mode** na panelu přepínače a aniž tlačítko uvolníte, zapnete napájení přepínače. Tlačítko můžete uvolnit, jakmile na panelu zhasne LED nad portem **1x**. Na obrazovce terminálu (v okně emulátoru) se objeví:

```
The system has been interrupted prior to initializing the flash filesystem. The following
commands will initialize the flash filesystem, and finish loading the operating system
software:
flash_init
load_helper
boot
switch: <--- toto je prompt zavaděče
```

4. Po zobrazení promptu zavaděče zadejte příkazy flash_init a load_helper:

```
switch: flash_init
Initializing Flash...
flashfs[0]: 143 files, 4 directories
flashfs[0]: 0 orphaned files, 0 orphaned directories
flashfs[0]: Total bytes: 3612672
flashfs[0]: Bytes used: 2729472
flashfs[0]: Bytes available: 883200
flashfs[0]: flashfs fsck took 86 seconds
....done Initializing Flash.
Boot Sector Filesystem (bs:) installed, fsid: 3
Parameter Block Filesystem (pb:) installed, fsid: 4
switch: load_helper
switch:
```

5. Nyní můžete vypsat obsah paměti FLASH příkazem **dir flash:** (pozor – nepřehlédněte, že za **flash** je dvojtečka):

```
switch: dir flash:
Directory of flash:/
2 -rwx 1803357 <date> c3500xl-c3h2s-mz.120-5.WC7.bin <--- zde je obraz OS
4 -rwx 1131 <date> config.text <--- zde je konfigurace
5 -rwx 109 <date> info
6 -rwx 389 <date> env_vars
7 drwx 640 <date> html
18 -rwx 109 <date> info.ver
403968 bytes available (3208704 bytes used)
switch:
```

6. Heslo je uloženo v souboru config.text. Proto je nutné zabránit OS, aby při zavádění načetl tento soubor. Teoreticky by stačilo soubor smazat a restartovat přepínač, ale tím ztratíte původní konfiguraci. Naštěstí lze OS jednoduše obelstít tím, že soubor dočasně přejmenujete:

```
switch: rename flash:config.text flash:config.old
switch:
```

7. Nyní dokončete zavádění OS příkazem boot:

8. Protože OS nenašel konfigurační soubor, nabídne vám vytvoření nové konfigurace pomocí menu. Pokud na výzvu odpovíte **no**, systém přejde do příkazového režimu:

```
--- System Configuration Dialog ---
At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.
Continue with configuration dialog? [yes/no]: n
Press RETURN to get started.
Switch>
```

9. To je klíčový bod. Protože OS nenašel konfigurační soubor, není přístup do privilegovaného modu chráněn heslem a příkazem **enable** se do něj dostanete bez znalosti hesla:

```
Switch>enable
Switch#
```

10. Nyní přejmenujte konfigurační soubor zpět na původní jméno:

```
Switch#rename flash:config.old flash:config.text
Destination filename [config.text] <--- potvrďte implicitní jméno stiskem ENTER
Switch#
```

11. ... a načtěte původní konfiguraci ze souboru do paměti:

```
Switch# copy start run
Switch#
```

12. Tím se sice načetlo i původní heslo, ale teď už to nevadí, protože jste v privilegovaném modu a máte plnou kontrolu nad přepínačem. Takže můžete zrušit nebo změnit přístupové heslo k privilegovanému modu:

```
Switch#configure terminal
Switch(config)#enable secret Cisco <--- zde se zadává nové heslo
Switch(config)#exit
Switch#</pre>
```

13. Nyní již můžete uložit aktuální konfiguraci do paměti FLASH (je to původní konfigurace, ve které jste změnili pouze heslo):

```
Switch# copy run start
Building configuration...
[OK]
Switch#
```

Popsaný postup lze samozřejmě modifikovat. Můžete např. původní konfigurační soubor ponechat přejmenovaný (vynechat bod 10), načíst ho do paměti (v bodu 11 zadat aktuální jméno souboru) a novou konfiguraci uložit pod implicitním jménem. Pokud původní konfiguraci nepotřebujete, můžete v bodě 6 konfigurační soubor místo přejmenování smazat (příkazem **delete flash: config.txt**) a zotavení ukončit bodem 7 (zavedení OS).

Poznámka k přepínačům CISCO série 1900

Vybavení a ovládání těchto přepínačů je poněkud odlišné, i když funkce jsou podobné jako u přepínačů 2900/2950. Velmi dobrý popis konfigurace přepínačů řady 1900 (v angličtině) najdete v knize

Todd Lammle: CCNA Cisco Certified Network Associate Study Guide (second edition)

na stranách 567 až 632 (příloha B: Configuring the Catalyst 1900 Switch). Tuto knihu (v angličtině) máte k dispozici v elektronické podobě jako soubor *Sybex_CCNA20_StudyGuide_e2.pdf* a doporučuji projít si ji celou, protože se jedná o velmi dobře napsanou učebnici pro přípravu k certifikačnímu testu CCNA.